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--------- Daniel Garber ---------

Old Evidence and Logical Omniscience in
Bayesian Confirmation Theory

The Bayesian framework is intended, at least in part, as a formalization
and systematization of the sorts of reasoning that we all carryon at an
intuitive level. One ofthe most attractive features ofthe Bayesian approach
is the apparent ease and elegance with which it can deal with typical
strategies for the confirmation of hypotheses in science. Using the
apparatus ofthe mathematical theory ofprobability, the Bayesian can show
how the acquisition of evidence can result in increased confidence in
hypotheses, in accord with our best intuitions. Despite the obvious
attractiveness of the Bayesian account of confirmation, though, some
philosophers ofscience have re~isted its manifest charms and raised serious
objections to the Bayesian framework. Most of the objections have
centered on the unrealistic nature ofthe assumptions required to establish
the appropriateness of modeling an individual's beliefs by way of a point
valued, additive function.' But one recent attack is of a different sort. In a
recent book on confirmation theory, Clark Glymour has presented an
argument intended to show that the Bayesian account of confirmation fails
at what it was thought to do best. 2 Glymour claims that there is an
important class of scientific arguments, cases in which we are dealing with
the apparent confirmation of new hypotheses by old evidence, for which
the Bayesian account ofconfirmation seems hopelessly inadequate. In this
essay I shall examine this difficulty, what I call the problem ofold evidence.
I shall argue that the problem of old evidence is generated by the
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Isaac Levi, Teddy Seidenfeld, Brian Skyrms, William Tait, and Sandy Zabell. Finally, I would
like to dedicate this essay to the memory ofDavid Huckaba, student and friend, with whom I
discussed much of the material in this paper, who was killed in the crash ofhis Navy training
flight in February of 1.980 while this paper was in progress.
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requirement that the Bayesian agent be logically omniscient, a require
ment usually thought to follow from coherence. I shall show how the
requirement oflogical omniscience can be relaxed in a way consistent with
coherence, and show how this can lead us to a solution ofthe problem ofold
evidence.

Since, as I. J. Good has conclusively shown, there are more kinds of
Bayesianism than there are Bayesians3

, it will be helpful to give a quick
sketch ofwhat I take the Bayesian framework to be before entering into the
problem ofold evidence. By the Bayesian framework I shall understand a
certain way of thinking about (rational) beliefand the (rational) evolution of
belief. The basic concept for the Bayesian is that of a degree of belief. The
degree ofbeliefthat a person S has in a sentence p is a numerical measure of
S's confidence in the truth of p, and is manifested in the choices S makes
among bets, actions, etc. Formally S's degrees of belief at some time to are
represented by a function Po defined over at least some of the sentences of
S's language 1.4 What differentiates the Bayesian account of belieffrom
idealized psychology is the imposition of rationality conditions on S's
beliefs. These rationality conditions are of two ;arts, synchronic and
diachronic. The most widely agreed upon synchronic condition is
coherence:

(01) A P-function is coherent iff there is no series ofbets in accordance
with P such that anyone taking those bets would lose in every possible
state of the world.

Although there are those who would argue that coherence is both
necessary and sufficient for S's beliefs to be rational at some given time, I
shall assume only that coherence is necessary. One ofthe central results of
Bayesian probability theory is the'coherence theorem, which establishes
that if P is coherent, then it is a (finitely additive) probability function on
the appropriate group of objects (i. e., the sentences of S's language L),s In
the discussions below, I shall assume that an individual's degrees of belief
have at least that much structure. Although there is little agreement about
rational belief change, one way of changing one's beliefs is generally
accepted as rational by most Bayesians, conditionalization. One changes
one's beliefs in accordance with conditionalization when, upon learning
that q, one changes one's beliefs from Po to P j as follows:

Pj(p) = Po(p/q)

where conditional probability is defined as usual. There are some who take

conditionalization as the sine qua non ofthe Bayesian account ofbelief but
I shall regard it as one among a number of possible ways of cha:ging
rational belief, a sufficient but not necessary condition of diachronic
rationality.6 Despite this proviso, though, conditionalization will have a
major role to play in the discussion of confirmation that follows.

There are two competing ways of thinking about what the Bayesian is
supposed to be doing, what I call the thought police model and the learning
machine model. On the thought police model, the Bayesian is thought ofas
looking over our shoulders and clubbing us into line when we violate
certain principles ofright reasoning. On this view, the axioms ofthe theory
of probability (i.e., coherence) and, perhaps, the dynamical assumption
that we should change our beliefs in accordance with conditionalization are
the clubs that the Bayesian has available. On the learning machine model,
on the other hand, the Bayesian is thought of as constructing an ideal
learning machine, or at least describing the features that we might want to
build into an ideal learning machine. 7 Unlike others, I do not see a great
deal ofdifference between these two ways ofthinking about the enterprise.
The Bayesian thought policeman might be thought of as clubbing us into
behaVing like ideal learning machines, ifwe like. Or, alternatively, we can
think of the ideal learning machine as an imaginary person who behaves in
such a way that he never needs correction by the Bayesian thought police.
The two models thus seem intertranslatable. Nevertheless, I prefer to
think of the Bayesian enterprise on the learning machine model. Although
this has no theoretical consequences, I think that it is a better heuristic
model when one is thinking about the confirmation of hypotheses from a
Bayesian point of view.

1. The Problem of Old Evidence

In the course of presenting his own ingenious account of the confirma
tion ofscientific hypotheses by empirical evidence, Clark Glymour offers a
number ofreasons why he chooses not to follow the Bayesian path. Many of
Glymour's arguments are worth serious consideration; but one of the
problems Glymour raises seems particularly serious, and seems to go to the
very foundations of the Bayesian framework. Glymour writes:

Scientists commonly argue for their theories from evidence known
long before the theories were introduced. Copernicus argued for his
theory using observations made over the course of millenia. . . .
Newton argued for universal gravitation using Kepler's second and
third laws, established before the Principia was published. The
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theories in question. But if we are to adopt a Bayesian account of
confirmation in accordance with which e confirms h iffP (h/e) > P (Ii), then
how can we ever say that a piece ofevidence, already known, confirms hPlO

Now that we have a grasp on the problems, we can begin.to look for some
possible ways of responding. One obvious response might begin with the
observation that if one had not known the evidence in question, then its
discovery would have increased one's degrees ofbeliefin the hypothesis in
question. That is, in the circumstances in which e really does confirm h, ifjt
had been the case that P (e) > 1, then it would also have been the case that
P (h/e) > P (h). There are, to be sure, some details to be worked out here. 11

IfP (e) were less than one, what precisely would it have been? What, for
that matter, would all of the rest of the P-values have been? If such details
could be worked out in a satisfactory way, this counterfactual gambit would
offer us a reasonably natural solution to the ahistorical problem of old
evidence. This solution amounts to replacing the identification ofconfirma
tion with positive statistical relevance with a more subtle notion of
confirmation, in accordance with which e (ahistorically) confirms h iff, if e
had been previously unknown, its discovery would have increased our
degree of belief in h. That is, e (ahistorically) confirms h iff, ifP(e) (and, of
course, P(h) were less than one, then P(h/e) would be greater than P{h). In
what follows I shall assume that the ahistorical problem ofold evidence can
be settled by some variant or other of this counterfactual strategy. 12

It should be evident, though, that however well the counterfactual
strategy might work for the ahistorical problem of old evidence, it leaves
the historical problem untouched. When dealing with Einstein and the
perihelion of Mercury, we are not dealing with a counterfactual increase in
Einstein's confidence in his theory: we are dealing with an actual increase
in his degree of belief. Somehow or other, Einstein's consideration of a
piece of old evidence served to increase his confidence in his field
equations, not counterfactually, but actually. This is something that the
counterfactual solution cannot deal with.

How, then, are we to deal with the historical problem of old evidence,
the cases in which considerations involVing old evidence seem actually to
raise an investigator's confidence in one ofhis hypotheses? We can put our
finger on exactly what is going wrong in the Bayesian account ifwe go back
and examine exactly when a piece of old evidence does seem to confirm a
new hypothesis. It is appropriate to begin with the observation that
Glymour's conclusion is not always implausible. There are, indeed, some

= Prob,(T)
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Prob,(T, e) =

argument that Einstein gave in 1915 for his gravitational field
equations was that they explained the anomalous advance of the
perihelion of Mercury, established more that half a century earlier
.... Old evidence can in fact confirm new theory, but according to
Bayesian kinematics it cannot. For let us suppose that evidence e is
known before theory T is introduced at time t. Because e is known at t,
Probt{e) = 1. Further, because Prob,(e) = 1, the likelihood ofe given
T, Probt(e, 1'), is also 1. We then have:
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Prob t{1') x Probt{e, 1')

Probt{e)

The conditional probability ofT on e is therefore the same as the prior
probability ofT: e cannot constitute evidence for T . ... None of the
Bayesian mechanisms apply, and ifwe are strictly limited to them, we
have the absurdity that old evidence cannot confirm a new theory. 8

Before trying to understand what is going wrong for the Bayesian and
seeing what can be said in response, it will be worth our while to look more
closely at the problem itself. There are at least two subtly different
problems that Glymour might have in mind here. One of these problems
concerns the scientist in the midst of his investigations who appears to be
using a piece ofold evidence to increase his confidence in a given theory. If
we adopt a Bayesian model of scientific inquiry, then how could this
happen? How could an appeal to old evidence ever raise the scientist's
degree of belief in his theo!)'? This is what I shall call, for the moment, the
historical problem ofold evidence. 9 But there is a second possible problem
lurking in Glymour's complaints, what might be called the ahistorical
problem ofold evidence. When we are first learning a scientific theory, we
are often fn roughly the same epistemic position that the scientist was in
when he first put the theory to test; the evidence that served to increase his
degrees ofbeliefwill increase ~urs as well. But having absorbed the theory,
our epistemic position changes. The present appeal to Kepler's laws does

. not any more actually increase OUf confidence in Newton's theory of
universal gravitation, nor does the appeal to the perihelion of Mercury
actually increase our confidence in general relativity any more. Once we
have learned the theories, the evidence has done its work on our beliefs, so
to speak. But nevertheless, even though the old evidence no longer serves
to increase our degrees of belief in the theories in question, there is still a
sense in which the evidence in question remains good evidence, and there
is still a sense in which it is proper to say that the old evidence confirms the
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circumstances in which an old e cannot raise the investigator's degree of
belief in a new h. For example, suppose that S constructed h specifically to
account for e, and knew, from the start, that it would. It should not add
anything to the credibility ofh that it accounts for the evidence that S knew
all along it would account for. In this situation, there is not confirmation, at
least not in the relevance sense of that term. 13 The evidential significance
of the old evidence is, as it were, built into the initial probability that S
assigns to the new hypothesis. Where the result is paradoxical is in the case
in which h was concocted without having e in mind, and only later was it
discovered that h bears the appropriate relations to e, i.e., that h (and
perhaps som~ suitable auxiliaries) entails e, that e is a positive instance ofh,
or the like. Just what the relationship in question is a matter of some
debate. But it seems clear that in the cases at hand, what increases S's
confidence in h is not e itself, but the discovery ofsome generally logical or
mathematical relationship between hand e. In what follows I shall often
assume for simplicity that the relation in question is some kind of logical
entailment. But although the details may be shaped by this assumption,
the general lines of the discussion should remain unaffected.

With this in mind, it is now possible to identify just which part of the
Bayesian framework is generating the problem. In the Bayesian frame
work, coherence is almost always taken to im\?ly that the rational subject S,
the constraints on whose degrees of belief the Bayesian is trying to
describe, is logically omniscient. Since logical (and mathematical) truths
are true in all possible stat~s of the world, if P is to be coherent, then
coherence must, it seems, preclude the possibility of S's accepting a bet
against a logical truth. Consequently, coherence seems to require that S be
certain of (in the sense of having degree of belief one in) all logical truths
and logical entailments. Now for logically omniscient S it is absolutely
correct to say that old evidence e does not increase his confidence in a new
hypothesis h. Because of S's logical omniscience, S will see immediately,
for every new hypothesis, whether or not it entails his preViously known
evidence (or, perhaps, bears the appropriate logical relations to it). No
hypothesis ever enters S's serious consideration without his knowing
explicity just which of his past observations it entails. So every new
hypothesis S takes into consideration is, in a clear sense, based on the
previously known observations it entails: the initial probability assigned to
every new hypothesis already takes into account the old evidence it entails.
For no hypothesis h and evidence e can the logically omniscient Sever

discover, after the fact, that h entails e. And, as I have suggested above, in
such a circumstance, it is perfectly intuitive to suppose that the previously
known evidence does not confirm the new hypothesis in the sense of raising
its probability. The historical problem ofold evidence, then, seems to be a
consequence of the fact that the Bayesian framework is a theory of
reasoning for a logically omniscient being.

It has generally been recognized that the Bayesian framework does not
seem to allow the Bayesian agent to be ignorant of logical truths, and thus
does not allow a Bayesian account of logical or mathematical reasoning.
Although this has been considered a weakness of the framework, it has
usually been accepted as an idealization that we must make in order to
build an adequate account of the acquisition ofempirical knowledge. What
the problem of old evidence shows is that this idealization will not do:
without an account ofhow the Bayesian can come to learn logical truths, we
cannot have a fully adequate theory of empirical learning either. So if we
are to account for how old evidence can raise the investigator's degree of
belief in new hypotheses, we must be able to account for how he can come
to know certain logical relations between hypothesis and evidence that he
did not know when he first formulated the new hypothesis.

The problem ofold evidence is not ofcourse the only reason for seeking
an account oflogicallearning consistent with Bayesian principles. There is
an even deeper concern here. \Vith the assumption oflogical omniscience,
there is a philosophically disturbing asymmetry between logical and
empirical knowledge in the Bayesian framework. Although it may be
unfortunate that we lack omniscience with respect to empirical truths, the
Bayesian account makes it irrational to be anything but logically omni
scient. The Bayesian agent who is not logically omniscient is incoherent,
and seems to violate the only necessary condition for synchronic rationality
that Bayesians can agree on. This is an asymmetry that smacks of the
dreaded analytic-synthetic distinction. But scruples about the metaphysi
calor epistemic status of that distinction aside, the asymmetry in the
treatment oflogical and empirical knowledge is, on the face ofit, absurd. It
should be no more irrational to fail to know the least prime number greater
than one million than it is to fail to know the number of volumes in the
Library of Congress. 14

The project, then, is clear: if the Bayesian learning model is to be saved,
then we must find a way to deal with the learning of/ogical truths within the
Bayesian framework. Ifwe do this correctly, it should give us both a way of
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eliminating the asymmetry between logical and empirical knowledge, and
a way of dealing with the problem of old evidence. This is the problem

taken up in the following sections.

2. Two Models of Logical Learning

A solution to the problem of old evidence requires that the Bayesian be
able to give an account of how the agent S can come to know logical truths
that he did not previously know. In this section I shall present and discuss
two possible Bayesian models oflogicallearning. Because ofthe immediate
problem at hand, the models will be formulated in terms of a particular
kind oflogical truth, those ofthe form "p logically entails q," symbolized by
"p f- q," although much ofwhat I say can be extended naturally to the more
general case. In this section I shall not discuss the precise nature of the
logical implications dealt with here (Le., truth-functional entailment vs.
first order quantificational entailment vs. higher order quantificational
eptailment, etc.), nor shall I discuss the nature of the underlying language.
These clarifications and refmements will be introduced as needed in the
succeeding sections. But even without these refinements, we can say some
interesting things about the broad paths we might follow in providing a

Bayesian account of logical learning.
The two models of logical learning that I would like to discuss are the

conditionalization model and the evolving probability model. On the
conditionalization model, when S learns that p f- q, he should change his

beliefs from Po to P, as follows:

P,( _ ) = Po (-/p f- q)
On the evolving probability model, on the other hand, when S learns that
p f- q, he is required to change his beliefs in such a way that P(q/p) = 1, and
to alter the rest of his beliefs in such a way that coherence is maintained, or
at least in such away that his beliefs are as coherent as they can be, given his

imperfect knowledge of logical truth. '5
Which, if either, of these models should the Bayesian adopt? The

conditionalization model has obvious attractions, since it fits neatly into the
most popular Bayesian account of belief change in general. But however
attractive it might be on its face, the conditionalization model has one
obvious difficulty. I pointed out earlier that coherence seems to require
that all logical truths get probability one. Consequently we are left with an
unattractive choice ofalternatives. It seems as ifwe must either say that the
conditionalization model fails to allow for any logical learning, since in the
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ity model can tell us nothing general about the effect that learning that
hI- e may have on the rest of one's beliefs, The effect it has is determined
by the way in which one changes from Pte/h) < 1 to P(e/h) = 1, and the
evolving probability model says nothing about this. 16

There is a second, more philosophical difficulty connected with the
evolving probability modeL Although the evolving probability model gives
the Bayesian a way of dealing with logical learning, something of the
original asymmetry between logical and empirical learning still remains.
Upon learning an empirical truth, one (presumably) changes one's beliefs
through conditionalization, whereas upon learning a logical truth, one
changes one's beliefs through evolving probabilities. This continuing
asymmetry should make us feel somewhat uncomfortable. The asymmetry
could be eliminated, of course. We could declare that the evolving
probability scheme is the way to change one's beliefs whether we learn
empirical truths or logical ones, and give up conditionalization altogether,
even for empirical learning. One might say, for instance, when 5 learns that

. e, he should simply change his beliefs in such a way that P1(e) = 1, along
with whatever other changes are necessary to restore coherence. But this is
not very satisfactory. It would subject empirical learning to the same kind
of indeterminacy that logical learning has, on the evolving probability
model, and prevent our saying anything interesting of a general nature
about empirical learning as well. '

These two problems are serious. But there is a third problem even more
serious than the previous two. Although the evolving probability model
may give us a way of thinking about logical learning within the Bayesian
framework, it is utterly incapable of dealing with the problem of old
evidence. I argued that in the circumstances that give rise to the problem it

is learning that our new hypothesis entails some piece ofold evidence (or is
related to it in some appropriate logical or mathematical way) that raises
our degree of belief in h. But if we adopt the evolving probability model,
learning that h I- e in those circumstances will not change our beliefs at all!
The evolving probability model tells us that when we learn that h I-e, we
should alter our beliefs in such a way that P(e) = 1. But in the cases at hand,
where e is old evidence, and thus P (e) = 1, P(e/h) already equals 1 (as does
"P(h :J en. So, in the cases at hand, the evolving probability model will
counsel no change at all in our degrees of belief. Thus learning that
hI- e can have no effect at all on our degree of belief in h, if e is previously

known.

I have offered three reasons for being somewhat cautious about adopting
the evolving probability model of logical learning. These arguments
suggest that we turn to the conditionalization model. We must of course
subject the conditionalization model to the same tests to which we
subjected the 'evolving probability modeL We must examine how well it
determines the new probability function, how well it deals with the
problem ofasymmetry, and most important ofall, how well it deals with the
problem of old evidence. But first we must deal with the most basic and
evident difficulty confronting the conditionalization model: can any sense
be made of a probability function in which P(h I- e) is anything but 0 or I?
Will allowing probability functions in which 0 < P(h I- e) < 1 force us into
incoherence in both the technical and nontechnical senses of that word?

.3, Coherence and Logical Truth: An Informal Account

As 1 noted earlier, the standard definition of coherence, (Dl), seems to
require that all logical truths get probability 1. For surely, ifh entails e, it
entails e in every possible state ofthe world, it would seem. And ifwe were
to assign probability less than one to a sentence like "h I- e," then we would
be allowed to bet that "h I- e" is false, a bet that we would lose, no matter
what state of the world we were in. Thus if we require P to be coherent,
logical omniscience seems inescapable, and the conditionalization model of
logical learning seems untenable.

One way out of this problem might be to eliminate coherence as a
necessary condition of rational belief. But this is not very satisfying. Ifwe
were to eliminate coherence, we would have no synchronic conditions on
rational beliefat all; the Bayesian framework would reduce to an idealized
psychology. It might help to reintroduce coherence as an ultimate goal of
inquiry, as the evolving probabilist implicitly does. But, as I suggested in
the course ofour examination of the evolving probability model, this is not
very attractive. This ploy has the unfortunate consequence ofallOWing us to
say nothing of interest about the characteristics that a rational person's

[beliefs would have to exhibit at any given time. Explicitly relativizing
coherence to an individual's state ofknowledge with respect to logical truth
might seem attractive, and has actually been proposed. 17 But this will give
us little of the mathematical structure that we want. Moreover, it has the
extra problem of introducing the philosophically problematic notion of
knowledge explicitly into the Bayesian framework.

But all is not lost. Although it does not seem advisable to eliminate or
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weaken coherence, perhaps a more careful examination of the coherence
condition itself may give us a way of weakening the requirement of logical
omniscience. The definition of coherence is obviously relativized to
another notion, that of a possible state of the world. How we understand
that notion should have important consequences for the constraints that
the coherence condition imposes on an individual's beliefs. And how we
understand the notion ofa possible state ofthe world, it turns out, depends
on what we think the Bayesian learning model is supposed to do.

One popular conception of the Bayesian enterprise is what I shall call
global Bayesianism .'8 On this conception, what the Bayesian is trying to
do is build a global learning machine, a scientific robot that will digest all of
the information we feed it and churn out appropriate degrees of belief. On
this model, the choice ofa language over which to define one's probability
function is as important as the constraints that One imposes on that function
and its evolution. On this model, the appropriate language to building into
the scientific robot is the ideal language of science, a maximally fine
grained language L, capable of expressing all possible hypotheses, all
possible evidence, capable of doing logic, mathematics, etc. In short, L
must be capable, in principle, of saying anything we might ever find a need
to say in science.

Now, given this global framework,there is a natural candidate for what
the possible states of the world are: they are the maximal consistent sets of
sentences in L. But if these are what we take to be the possible states of the
world, then logical omniscience of the very strongest sort seems to be
demanded, and the conditionalization model of logical learning goes out
the window. For if the possible states of the world are the maximal
consistent sets of sentences in the most fine-grained, ideal language of
science, then they are, in essence, the logically pOSSible states ofthe world.
And ifI am coherent with respect to these states, i. e., if! am not allowed to
enter into bets that Iwould lose in every such logically possible state of the
world, then I must have degree of belief one in all logical truths.

Butthere are reasons for thinking twice before accepting this conclusion.
Although global Bayesianism is a position often advanced, it is a very
implausible one to take. For one thing, it does not seem reasonable to
suppose that there is anyone language that we can be sure can do
everything, an immutable language of science of the sort that the Vienna
Positivists sought to construct. Without such a language, the scientific
robot model of Bayesianism is untenable, as is the idea that there is some

one unique set of logically possible states of the world to which we are
obligated to appeal in establishing coherence. But even if it were possible
to find a cannollIcal and complete language for science, it would not be of
much use. One of the goals of the Bayesian enterprise is to reconstruct
scientific pr~ctice, even if in an idealized or rationalized form. Typically
when SCIentists or deCISIOn makers apply Bayesian methods to the clarifica
tion of inferential problems, they do so in a much more restriCted scope
than global Bayesianism suggests, dealing only with the sentences and
degrees ofbeliefthat they are actually concerned with, those that pertain to
the problem at hand.

This suggests a differen t way of thinking about the Bayesian learning
model, what one mIght call local Bayesianism 19 On this model the
Bayesian does not see himselfas trying to build a global learning machine,
or a sc,entIf,c robot. Rather, the goal is to build a hand-held calculator, as it
were, a tool to help the scientist or decision maker with particular
mferentIal problems. On this view, the Bayesian framework provides a
~eneral ~ormal structure in which One can set up a wide variety of different
mferentIal problems. In order to apply it in some particular situation we
enter in only what we need to deal with in the context of the proble~ at
hand, 1. e., the particular sentences with which we are concerned and th
beliefs (prior probabilities) we have with respect to those sent~nces. e

So, for example, if we are interested in a particular group of hypotheses
hi>. and what we could learn about them if we were to acquire some
eVIdence e;, then our problem relative language L' would naturally enough
be Ju.st the truth-functional closure of the h; and the e;. Our probability
functIOns would then, for the duration of our interest in this problem, be
defined not over the maXimally specific language of science L but over the
conSiderably more modest problem-relative language L'. '

In working only with the problem relative L', we are in effect treating
each of the h; and e; as atomic sentences. This is not to say that h. and e.
don't have any structure. OfCOurse they do. It is by virtue ofthat str~cture'
which determines their meanings, that we can tell in a given observational
circumstance whether Or not a given ej is true, and it is by virtue of that
structure that we know what it is that our degrees of belief are degrees of
belIef about! But none of this extra content is entered into Our Bayesian
hand-held calculator. Whatever structure h; and e; might have in some
language richer than L' is submerged, so to speak, and the h; and e; treated
as unanalyzed wholes from the point of view of the problem at haod. This
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extra structure is not lost, of course. But it only enters in extrasystemati
cally, so to speak, when, for example, we are assigning priors, o~ when.we
are deciding whether or not a particular observational sentence IS true III a

particular circumstance. - .
This seems to open the door to a Bayesian treatment ofloglCal truth. In

some investigations we are interested only in sentences like "hi" and "ej."
But in others, like those in which the problem of old evidence comes up,
we are interested in other sentences, like "hi f- ej." Sentences like
"h. I- et certainly have structure. Depending on the context of investiga
tio1n, "f- "may be understo~d as truth-functional implicatio~, or i~pli~a
tion in L, the global language of science. We can even read hi f- ej as ei

is a positive instance of hi>" or as "ej bootstrap confirms hi with respect to
some appropriate theory," as Glymour demands. 20 But whatever extrasys
tematic content we give sentences like "hi I- ej," in the context of our
problem-relative investigation we can throw such sentences into our
problem-relative language as atomic sentences, unanalyzed and unanalyz
able wholes, and submerge whatever content and structure they mIght

have exactly as we did for the hi and ei·
Su'ppose now that we are in a circumstance in which logical relations

between sentences are of concern to us. Say we are interested in some
implicative relations between hypotheses and evidence, sentences of the
form "hi rei." The problem-relative language will be the truth-functIOnal
closure of all the h" ei, and .sentences of the form "hi r e,," where each of
these sentences, including those of the form "hi I- ej" is treated as an
atomic sentence ofthe problem relative language. Now the crucial question
is this: what constraints does coherence impose on probability functions
d~fined over this language? In particular, does coherence require that
all sentences of the form "hi r e;" get 0 or I? If not, then we are out of
the woods and on our way to an account of logical learning through

conditionalization.
As I argued, in order to decide what follows from coherence, we must

determine what is to count as a possible state ofthe world. Nowm glvmg up
global Bayesianism and any attempt to formulate a maximally fine-grained
language of science, we give up in effect the idea that there is so~e one s.et
oflogically possible states of the world that stands behind every mferenhal
problem. But how then are we to understand states of the world? The
obvious suggestion is this. In the context of a particular investigation, we
are interested in some list of atomic sentences and their truth-functional

compounds: hypotheses, possible evidence, and statements of the logical
relations between the two. Insofar as we are uncertain ofthe truth or falsity
of any of these atomic sentences, we should regard each of them as true in
some states of the world, and false in others, at least in the context of our
investigation. And since, in the context of investigation, we are interested
in no other sentences, our problem relative states of the world are easily
specified: they are determined by every possible distribution of truth
values to the atomic sentences of the local language L'. This amounts to
replacing the logically possible worlds of the global language with more
modest epistemically possible worlds, specified in accordance with our
immediate interests.

Now if the possible states of the world are those determined by all
possible assignments of truth values to the atomic sentences of the local
language L', then coherence imposes one obvious constraint on the
scientisfs degrees of belief: if sentence T in L' is true on all possible
assignments of truth values to the atomic sentences of L', then P(T) = 1.
That is, ifTis a tautology ofL' then P(T) = 1. Coherence understood in this
way, however, relativized to the problem-relative states of the w0rld, does
not impose any constraints on the atomic sentences of L'. Since for any
atomic sentence ofL' there are states ofthe world in which itis false, we can
clearly assign whatever degree of belief we like to any of the atomic
sentences without violating coherence, i.e., without being caught in the
position of accepting bets that we would lose in every (problem-relative)
state of the world. And this holds even if one of those atomic sentences is
extrasystematically interpreted as "h logically entails e."

This seems to get us exactly what we want. It seems to allow us to talk
about uncertainty with respect to at least some logical truths, and in fact, it
allows us to do this without even violating coherence! This is an interesting
and slightly paradoxical result. In order to see better what is going on, and
make sure that there is no contradiction lurking beneath the surface of the
exposition, I shall try to set the result out more formally.

4. Coherence and Logical Truth: a Formal Account

In the previous section we dealt informally with relatively modest local
languages, a few hypotheses, a few evidential sentences, a few logical
relations. But the coherence result I argued for can be shown formally to
hold for much larger languages as well. Let us consider first the language L,
the truth-functional closure of a countably infinite collection of atomic
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sentences, {a.}. Let us build the larger language L* by adding to L some
new atomic sentences, those of the form "A f- B," where A and B are in L,
and again, closing under truth-functional operations. L* is a truth
functional language that allows us to talk about truth-functional combina
tions ofan infinite set ofatomic sentences {ai}' and relations ofimplication
between any truth-functional combination of these sentences. 21 So it is
clearly adequate to handle any of the problem situations that we had been
discussing earlier.

Now, L* is just a truth-functional language generated by a countably
infinite number ofatomic sentences, Le., those of the form "aj" or "A I- B."
So, if the possible states of the world are identified with possible
assignments of truth values to the atomic sentences of L*, on analogy with
what I argued above with respect to the more modest local languages, then
imposing coherence will fix no degrees of beliefwith respect to the atomic
sentences of L*. There will be coherent P-functions that will allow us to
assign whatever values we like in [0, I] to the atomic sentences ofthe form
"A f- B," however these may be interpreted extrasystematically. The only
specific values fixed by the requirement of coherencc will be those of the
tautologies and truth-functional contradictions in L*, i.e., the tautological
and contradictory combinations of atomic sentences of L*'.

This almost trivial result follows directly from the fact that, from the
point of view of the probability function; sentences like "A f- B" are
uninterpreted and treated on a par with the a;, treated like structureless
wholes. But, interestingly enough, a similar result can be obtained without
such a strong assumption. That is, we can introduce a certain amount of
structure on the atomic sentences of the form "A I- B" without restricting
our freedom to assign them probabilities strictly between 0 and 1.

In introducing the atomic sentences of the form "A f- B" into our local
problem-relative languages, I emphasized that "A f- B" could be inter
preted extrasystematically in a variety of different ways, as "A truth
functionally entails B," that is, as "'A:J B' is valid in L," as "A entails B in
some richer language" (e.g., in the maximally fine-grained ideal language
of science), or as some logical or mathematical relation other than
implication, e.g., as "B is a positive instance of A," or as "B bootstrap
confirms A with respect to some appropriate theory," in the sense in which
Glymour understands this relation. For the purpose of adding some
additional structure, though, let us assume that we are dealing with some
variety of implication or other. Now if "A f- B" is to be read as "A implies

B," w.e may want to require that our Bayesian investigator S recognize that
atomIC s~ntences of the form "A I- B" have some special properties,
however Implication is understood. Although we do not want to demand
that S recognize all true and false ones, it does seem reasonable to demand
that S recognize that modus ponens is applicable to these particular atomic
senten:~s ofL*. Tha,; is, we might require that if"A f- B" is to be properly
read as A ImplIes B, then at very least, ifS knows that A, and S knows that
A f- B, he must also know that B as well. Put probabilistically, this amounts
to adopting the following constraint over reasonable degree of belief
functions on L*:

(K) P(BfA & A f- B) = I, when defined.

Butsince, Renyi and Popper aSide, this conditional probability is unde
fined when P(A & A f- B) = 0, we might replace (K) with the following
shghtly stronger condition:

(K*) PtA & B & A f- B) = P(A & A f- B).

(K*) clearly reduces to (K) when the conditional probability in (K) is
defined.

(K*) is a stronger condition than it may appear on the surface. If in
addition to coherence, we impose (K*) on all "reasonable" probability
functlOns defined on L*, then we get a number of interesting and deSirable
properties, as outlined in the following theorem:

(TI) If P is a probability function on L* and P satisfies (K*), then:
(i) IfP(A f- B) = I, then P(A:J B) = I and P(BfA) = 1, when

defined.

(ii) P(-A/-B & A f- B) = I when defined.

(iii) If A and B are truth-functionally inconsistent in L, then
P(A & A f- B) = O.

(iv) P(Bf(A f- B) & (-A f- B)) = I, when defined.
(v) If P(A & A f- B) = I, then P(A f- -B) = O.

(vi) If Band C are truth-functionally inconsistent in L, then
P(A/(A f- B) & (A f- C)) = 0, when defined.

(vii) As P(B) -->0, P(A/A f- B) -->0 and PtA f- BfA) -->0.

(viii) If A and - B are both tautologies in L, then P(A f- B) = O.
Proof All of the arguments are trivial and left to the reader.

!hese properties are attractive, and seem appropriate when " I- " is
mterpreted as a variety of implication. zz Imposing (K*) guarantees that
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when we learn that A f- B, our degrees of belief in "A :J B" and our
conditional degrees of belief in B given A will behave appropriately, by
clause (i). It gives us a probabilistic version ofmodus tollens (clauses (ii) and
(vii)). It also guarantees that S will be certain of the truth of anything that
follows both from A and from - A (clause (iv)), and that S will be certain of the

, falsity of anything that has truth-functionally inconsistent consequences

(clause (vi)).
Now (K*) seems to be an appropriate constraint to impose on any

probability function defined over L*, if"f-" is to be interpreted as a variety
of logical implication. Although it does not guarantee that we are dealing
with a variety of implication, 23 it is certainly reasonable to require that any
variety ofimplication should satisfy (K*). But now matters are not so trivial.
Might adding (K*) as an extra constraint take away all of the freedom we
had in assigning probabilities to sentences of the form "A f- B" in L*? The
coherence condition imposes no constraints on assigning probabilities to
the atomic sentences ofL*, I have argued. Most importantly, it does not
force us to logical omniscience, to the position in which all sentences ofthe
form "A f- B" are forced to take on probabilities of 0 or 1. But might
coherence in conjunction with (K*)? The surprising answer is that with one
small exception (already given in (TI) (viii)), no! This result is set out in the

following theorem:

(T2) There exists at least one prob'lbility function P on L* such that P
satisfies (K*) and such that every atomic sentence in L* of the
form "A f- B" where not both Aand - B are tautologies gets a value

strictly between 0 and 1.

Proof Consider Land L* as above. Let P be any strictly positive
probability on L. That is, for A in L, P(A) = 0 iff A is truth
functionally inconsistent in L. Then extend P to L* as follows:

(i) Suppose that A iu L is not a tautology. Then let C be any
sentence in L which is nontautologous, noncontradictory,
and inconsistent with A. If A is not truth-functionally
inconsistent in L, then -A will do; otherwise let C be any
atomic sentence a, in L. Then, for any B in L, let P(A f- B) =

P(C); and for any D in L*, let P([A f- B] & D) = P(C & D);
P([A f- B]vD) = P(CvD); etc.

(ii) Suppose that A in L is a tautology and B is not. Then let

P(A f- B) = P(B); P([A f- B] & D) = P(B & D);P([A f- B]vD)
= P(BvD); etc.

(iii) Suppose that A and B in L are both tautologies. Then let
P(A f- B) = P(a.J, where "ai' is an arbitrary atomic sentence
in L; P([A f- B] & D) = P(a, & D); P([A f- B]vD) = P(a,vD);
etc.

P so extended is clearly a probability on L* Further, it can easily
be shown that P so extended satisfies (K*). And finally, since P on
L is strictly positive, P(A f- B) will never have a value of either 0
or I, except when both A and - B are tautologies, in which case it
will get a value of 0 by clause (ii).24

So it turns out that even if we add more structure, as we do when (K*) is
introduced, we are not forced to logical omniscience. Even with (K*) and
coherence, we are permitted to be uncertain of logical implications. 25

These technical conclusions call for some reflection. How can I say that I
have gotten rid of logical omniscience if S is still required to know all
tautologies ofL*? And ifS is required to know all tautologies ofL*, mustn't
the freedom he is given with respect to the sentences of the form "A f- B"
inevitably lead to contradiction? As regards logical omniscience, that has
been eliminated. Coherence still requires that we have some logical
knowledge. But knowing the tautologies of L* is a far cry from logical
omniscience, since there are many logical truths that are not tautologies of
L* The threat of internal contradiction is more subtle, though. Formally
speaking, there is no contradiction. The key to seeing this lies in
understanding the distinction between those logical truths that S is
required to know and those that he is not. Let A, B, A f- B be sentences in
our local problem relative language L*, where A and B are truth-functional
combinations of atomic sentences of L, and "A f- B" is an atomic sentence
ofL* interpreted (extrasystematically) as "A entails B." For the purposes of
discussion, it does not matter whether the turnstile is interpreted as truth
functional entailment in L, or something weaker. Now suppose that, as a
matter of fact, A does truth-functionally entail B. What precisely does
coherence require? It clearly requires that P(B/A) = I and P(A:J B) = 1.
That is, it requires that S be certain ofB conditional on A, and certain ofthe
tautology "A :J B." But if my argument is correct, S is not required to be
certain of the atomic sentence "A f- B," which can get a degree of belief
strictly between 0 and 1. That is, in requiring that S be certain of"A :J B,"
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coherence requires that S be certain that a particular truth-functional
combination of atomic sentences of L is true. But at the same time, in
allowing uncertainty with respect to "A r B," coherence allows that S
might be uncertain as to whether or not that truth-functio~alcombm~tlOn
of atomic sentences is valid. And insofar as truth and vahdlty are dlstmct,
there is no formal contradiction in asserting that S may be certain that
"A :::J B" is true without necessarily being certain that it is valid, Le.,

without being certain that "A r B" is true.
But even if there is no formal contradiction, there does appear to be a

kind ofinformal contradiction in requiring that S be certain ofA :::J B when A
truth-functionally entails B in L, while at the same time allowing him to be
uncertain of ArB. But this informal contradiction can be resolved easily
enough by adopting a new constraint on reasonable probability functions

on L*:

(*) If "A :::J B" is a tautology in L, then P(A r B) = l.

This would require that S know not only the truth ofall tautologies ofL, but
also their validity. 26 Although I see no particular reason to adopt (*), doing
so would resolve the informal appearance of contradiction without doing
much damage to the formalism or its applicability to scientific reasoning.
For truth-functional implication is not the only variety of implication. In
fact when we are interested.in the logical relations between hypotheses
and evidentiary sentences, the -kind of" implicatory relations we are
interested in will most likely be not truth-functional implication, but
quantification-theoretic implication in some background language richer
than L* in which the hypotheses and evidence receive their (extrasystema
tic) interpretation. So, in any realistic application of the formalism
developed in this section, adding (*) as a constraint will fix only a small
number of sentences of the form "A r B," and leave all of the rest
unaffected. (*) will fix all such sentences only in the case in which "A r B" is
interpreted rather narrowly as "A truth-functionally entails B in L," a case
that is not likely to prove of much use in the analysis ofscientific reasonmg.

5. The Conditionalization Model and Old Evidence Redux

After this rather lengthy argument, it might help to review where we
have been and gauge how much farther we have to go. Starting with the
problem ofold evidence, I argued that a fully adequate Bayesi~naccount of
scientific reasoning must include sOme account of the learnmg of logIcal

truths; in particular, it must allow for the fact that the logical and
mathematical relations between hypotheses and evidence must be discov
ered, just as the empirical evidence itself must be. I then presented two
Bayesian models oflogicallearning, the evolving probability model and the
conditionalization model, argued that the evolving probability model has
serious weaknesses, and suggested that we explore the conditionalization
model. In the previous two sections I showed that the central problem with
the conditionalization model, the Widely held conviction that coherence
requires that all logical truths get probability one, turns out not to be a
problem at all. I showed that if we ihink of the Bayesian framework as
problem-relative, a hand-held calculator rather than a scientific robot, then
we can make perfectly good sense ofassigning probabilities ofless than one
to the logical truths we are interested in, without even violating coherence!
This conclusion enables us to return to the conditionalization model for
learning logical truth, and discuss its adequacy, particularly in regard to the
problem of old evidence.

On the conditionalization model, when S learns a logical truth, like
"h r e," he should change his beliefs as follows;

Pl ( - ) = Po( - / h r e)

The investigations of the previous sections have shown that this does not
necessarily reduce to triViality, nor does it force us to give up the
requirement of coherence. But is it an otherwise attractive way to think
about the consequences of learning a logical truth? In discussing the
evolving probability model, I noted three problems: (a) the evolving
probability model does not uniquely determine a new probability function
upon learning that h r e; (b) the evolving probability model maintains an
asymmetry between logical and empirical learning; and (c) the evolving
probability model offers no solution to the (historical) problem of old
evidence. It is clear that the conditionalization model deals admirably with
the first two of these problems. Since "P( - / h r er is uniquely determined
for all sentences in the language over which P is defined, the conditionali
zation model gives us a unique new value for all sentences ofthat language,
upon learning that h r e. And there is obviously no asymmetry between
logical and empirical learning: both can proceed by conditionalization. The
third question, then, remains: how does the conditionalization model do
with respect to the problem of old evidence? Unlike the previous two
questions, the answer to this one is not obvious at all.
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Earlier I argued that the (historical) problem of old evidence derives
from the assumption oflogical omniscience. For the logically omniscient S,
old evidence can never be appealed to in order to increase his degree of
belief because, as soon as h is proposed, S can immediately see all of the
logical consequences ofh, and thus his initial probability for h will be based
on a complete knowledge of what it entails. If old evidence can be used to
raise the probability of a new hypothesis, then, it must be by way of the
discovery of previously unknown logical relations. In the cases that give
rise to the problem ofold evidence, we are thus dealing with circumstances
in which hypotheses are confirmed not by the empirical evidence itself, but
by the discovery ofsome logical relation between hypothesis and evidence,
by the discovery that h f- e. Now the evolving probability model oflogical
learning failed to deal with the problem of old evidence because on that
model, when P(e) = 1, learning that h f- e has no effects on S's degrees of
belief. The evolving probability model thus breaks down in precisely the
cases that are of interest to us here. But, one might ask, does the
conditionalization model do any better? That is, is it possible on the
conditionalization model for the discovery that h f- e to change S's beliefs
when e is preViously known, for P(h/h f- e) to be greater than P(h) when
P(e) = I? Unfortunately, (T2) will not help us very much here. (T2) does
have the consequence that P(h f- e) can be less than one when P(e) = 1,
which is certainly necessary if P(h/h f- e) is to be greater than P(h). But
because ofthe assljmption ofa strictly positive probability on L in the proof
of (T2), the probability function constructed there, in which (almost) all
implications get probability strictly between °and 1 will be such that for
anye, P(e) = 1 if and only if e is a tautology. Thus (T2) does not assure us
that P(h f- e) can be less than one when S is certain of a nontautologous e.
This is not very convenient, since the old evidence we are interested in is
not likely to be tautologous! Furthermore, although (T2) assures us that
(K*) does not require extreme values on all logical implications, it does not
assure us that that strong constraint ever allows for probability functions in
which P(h/h f- e) > P(h) for any e at all, tautologous or not. But luckily it is
fairly easy to show that under appropriate circumstances, there is always a
probability function on L* (in fact, an infinite number ofthem) that satisfies
(K*) in which, for any noncontradictory e, and for any nonextreme values
that might be assigned to P(h) and P(h f- e), P(e) = 1 and P(h/h f- e) > P(h).
This is the content of the follOWing theorem:

(T3) For Land L* constructed as above, for any atomic sentence ofL*

of the form "A f- B" where B is not a truth-functional contradic
tion in L and where A does not truth-functionally entail-Bin L
and B does not truth-functionally entail A in L, and for any r, sin
(0, 1), there exist an infinite number of probability functions on
L* that satisfY (K*) and are such that P(B) = 1, P(A f- B) = r,
P(A) = s, and P(AlA f- B) > P(A).

Proof Consider all sentences s, in L* of the following form (Carnapian
state descriptions):

(±)a,&, . &(±)an&(±)[A f- B]

where aI, . .. , an are the atomic sentences ofL that appear in every
sentence of L equivalent to either A or B, if B is not a tautology, or
those that appear in every equivalent ofA, ifit is, and "(±)" is replaced
by either a negation sign Or a blank. Define a function P over the s, as
follows. First of all, assign a P-value of °to any s, that truth
functionally entails -B in L* Since B is not truth-functionally
inconsistent, there will be some Sj that remain after the initial
assignment. Divide the remaining s, into the follOWing classes:

Class 1: s, that truth-functionally entail A&[A f- B]
Class 2: s, that truth-functionally entail A&-[A f- B]
Class 3: s, that trnth-functionally entail - A&[A f- B]
Class 4: s, that truth-functionally entail - A& -[A f- B]

Each s, truth-functionally entails either [A f- B] or -[A f- B], but not
both, and since each s, fixes the truth values of all of the atomic
sentences in A, each s, truth-functionally entails either A or -A, but
not both. Thus every remaining Sj fits into one and only one of these
classes. Also, since A does not truth-functionally entail - B, there will
be some Sj that remain which entail A, And while every remaining Sj

truth-functionally entails B, since B does not truth-functionally entail
A,. there will be some that remain which entail - A. Thus, it is obvious
that none of these classes will be empty. Now, let 0 = min(r(l- s), s(l
r)), and let e be an arbitrarily chosen number in (0,0]. Because of the
constraints imposed on rand s, 0> °and (0, 0] is nontrivial. Given
the constraints imposed on r, s, and e it can be shown that each ofthe
follOWing quantities is in [0, 1]:

rs + e, s(l - r) - e, r(1 - s) - e, (1 - r) (I - s) + e
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So, we can extend P to the remaining s" those that do not truth

functionally entail - B, as follows,

Class 1: Let P assign any values in [0, 1] to the s, in class 1 that sum to

rs + e
Class 2, Let P assign any values in [0, 1] to the s, in class 2 that sum to

s(l-r)-E
Class 3: Let P assign any values in [0, 1] to the s, in class 3 that sum to

r(l - s) - E

Class 4: Let P assign any values in [0, 1] to the s, in class 4 that sum to

(I - r) (1 - s) + E

This completes the definition of P on the s,. Since the values assigned
sum to 1, P defines a unique probability function on the sublanguage
ofL* generated by the s,. This can be further extended to the whole of
L* by assigning a P-value of 0 to all atomic sentences ofL* that do not
appear in the s,. P so defined clearly satisfies (K*), and is such that P(B)

= 1. Also:

P(A I- B) = rs + E + r(1 - s) - E = r
P(A) = rs + E + s(l - r) - E = s

Furthermore, P(A& [A I- B]) = rs + E> rs, so, P(A & [A I- B]) >
P(A)P(A I- B) and thus P(AlA I- B) > P(A). Since Ewas arbitrarily chosen
from (0, 0], there are an infinite number of probability functions on

L* that have the required properties. 27

To take a simple numerical example as an illustration of (T3), let us
suppose that hand e are both atomic sentences of L, say a, and a2, and let
us suppose that we want to build a probability function on L* in which
P(a,) = .4, P(a2) = 1, and P(a, I- a2) = .4, and in which P(a,/a, I- a2) >
P(a,), One such function can be constructed by assigning the following
probabilities to the appropriate state descriptions, and extending the

function to L* as in the proof of (T3):

P(a,&a2&[a, I- a2]) = .3 P(a,&a2&-[a, I- a2]) = .1
P(-a,&a2&[a, I- a2]) = .1 P(-a,&a2-[a, I- a2]) = .5
P(a,&-a2&[a, I- a2]) = 0 P(a,&-a2&-[a, I- a2]) = 0
P(-a,&-a2&[a, I- a2]) = 0 P(-a,&-a2&-[a, I- a2]) = 0

(Using the notation of the proofof(T3), r = s =.4, and 0 = .24, allowingE
to be any number in (0, .24]. The E chosen in the example is .14). The

extension of these probabilities on the state descriptions clearly satisfies
(K*), and clearly assigns the specified values to P(a,), P(a2), and P(a, I- a2)'
Furthermore, one can easily calculate that P(a,/a, I- a2) = .3/.4 = .75,
which is clearly greater than P(a,), Thus, on my construction, it is not
trivially the case that P(h/h I- e) = P(h) when P(e) = 1, and the discovery
that h I-e can raise S's confidence in h. That is to say, unlike the evolving
probability model, the conditionalization model oflogicallearning does not
break down over the case ofthe problem ofold evidence, even when (K*) is
assumed to hold.

With this last feature of the conditionalization model in place, we have
completed our solution to the problem ofold evidence. 1 have shown how
old evidence e can contribute to the confirmation of a more recently
proposed h through the discovery that h I- e, and 1have shown how this can
be done in a way consistent with Bayesian first principles. Or, perhaps
more accurately, 1 have shown one way in which the Bayesian can explain
how, on his view of things, old evidence can confirm new hypotheses. This
takes the sting out of Glymour's critique. With a bit of ingenuity the
Bayesian can accommodate the kinds of cases that Glymour finds so
damaging. But work remains before one can make a final judgment on the
particular proposal that 1 have advanced, the particular way in which 1 have
proposed to deal with the problem ofold evidence. In particular, one must
examine with great care the cases that Glymour cites-the case of
Copernican astronomy and the ancient evidence on which it rested,
Newton's theory of gravitation and Kepler's laws, and Einstein's field
equations and the perihelion of Mercury-along with other cases like
them, in order to determine whether or not my analysis ofthe reasoning fits
the cases at hand. We must show that the scientists in question were
initially uncertain that h I- e for the appropriate hand e, that their prior
degrees of belief were such that P(h/h I- e) > P(h)"", and that it was,
indeed, the discovery that h I- e that was, as a matter of fact, instrumental
in increasing their confidence in h. Such investigations go far beyond the
scope of this paper. My intuition is that when we look carefully at such
cases, the details will work out in favor of the account that 1 propose. 29 But
this is just an intuition.

6. Postscript: Bayesianizing the Bootstrap

I should point out that Clark Glymour was fully aware ofthe general lines
of the solution to the problem of old evidence offered here at the time
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Theory and Evidence was published. I proposed it to him while his book
was still in manuscript, and we discussed it at some length. In the
published version, Glymour gives a crude and early version of this line of
argument, along with some remarks on why he does not believe it saves the

Bayesian position. Glymour says:

Now, in a sense, I believe this solution to the old evidence/new
theory problem to be the correct one; what matters is the discovery of
a certain logical or structural connection between a pIece of eVlden~e
and piece of theory . . . . [The] suggestion is at least correct m
sensing that our judgement of the relevance of eVIdence to theory
depends on the perception of a structural connectlOn between the
two, and that the degree of belief is, at best, epiphenomenal. In the
determination of the bearing of evidence on theory, there seem to be
mechanisms and strategems that have no apparent connection w.ith
degrees of belief, which are shared alike by people advocatmg
different theories .... But if this is correct, what is really Important
and really interesting is what these structural features may be. The
condition of positive relevance [i.e., q confirms p iff P(p/q) > P(p)],
even if it were correct, would simply be t1i"e least interesting part of
what makes evidence relevant to theory.

As I understand it, Glymour's point is that what should be of interest to
confirmation theory is not degrees of belief and their relations, but the
precise nature of the structural or logical or mathematical relations
between hypothesis and evidence by virtue ofwhich the evidence confirms
the hypothesis. Put in terms I used earlier, Glymour is arguing that w~a,:
confirmation theory should interest itself in is the precise nature of the f
neces;ary to make the above given formalism applicable to the analysis of
scientific contexts, rather than in the fine details of how the discovery that
h I- e may, in some particular situation, raise (or lower) some scientist's
degree of belief in h. Now the most difficult kind of criticism to answer is
the one, that says that a certain project is just not very interesting or
important. I shall not attempt to defend the interest of my investigation~;

but I shall argue that they should be ofsome importance even to Glymour s
own program by showing that the account of confirmation through the
discovery oflogical truth that I offered in the body ofthis paper can be used
to fill in a large gap in Glymour's theory of confirmation.

The structural relation, which, Glymour argues, should be what is of
interest to the confirmati~n theorist, is the main focus of Theory and
Evidence, What he offers is a version of instance confirmation, but with an

important and novel twist. Unlike previous writers, Glymour allows the
use of auxiliary theories in the arguments used to establish that a given
piece of evidence is a positive instance of a given hypotheses. Glymour
summarizes his account as follows:

[N]eglecting anomalous cases, hypotheses are supported by posi
tive instances, disconfirmed by negative ones; instances ofa hypothe
sis in a theory, whether positive or negative, are obtained by
"bootstrapping," that is, by using the hypotheses of that theory itself
(or, conceivably, some other) to make computations from values
obtained fiom experiment, observation, or independent theoretical
considerations; the computations must be carried out in such a way as
to admit the possibility that the resulting instance of the hypothesis
tested will be negative. Hypotheses, on this account, are not generally
tested or supported or confirmed absolutely, but only relative to a
theory,"l

Glymour's intuitive sketch could be filled out in a number of ways. But
since the idea is clear enough, I shall pass over the details here. With
Glymour's bootstrap analogy in mind, I shall say that e BS confirms h with
respect to T when the structural relation in question holds, and will
symbolize it by "[h f- eh."

Glymour tells us a great deal about BS confirmation. But one thing that
he doesn't say velY much about is how we can compare different BS
confirmations. The discovery that [h f- eh is supposed to confirm h; it is
supposed to support h and give us some reason for believing h. But when
does one BS confirmation support h better than another? This is a general
question, one that could be asked in the context ofany confirmation theory.
But it has special importance for Glymour. A distinctive feature of
Glymour's theory of confirmation, one that he takes great pains to
emphasize, is the fact that BS confirmations are explicitly relativized to
auxiliary theories or hypotheses. By itself, this feature is unobjectionable.
But it leads to a bit of a problem when we realize that for virtually any
hypothesis h and any evidence e, there will be some auxiliary T such that
[h f- ek I shall not.give a general argument for this, but the grounds for
such a claim are evident enough when we examine how Glymour's BS
method applies to systems ofequations relating observational and theoreti
cal quantities.32 Let the hypothesis h be the following equation:

X(ql, ... , q;) = 0

where ql, . . . , q; are taken to be theoretical quantities; and let our
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evidence e consist of an n-tuple e" '.' " en ofdata points. The hypothesis
h and evidence e may be entirely unrelated intuitively; h might be some
equation relating physical magnitudes to one another, and e might be some
quantities derived from a sociological study. Yet, as long as h is not itself a
mathematical identity (Le., not every j-tuple of numbers is a positive
instance ofh), we can always construct an auxiliary hypothesis with respect
to which e BS confirms h. Let c" ... , Cj be a j-tuple of numbers that
satisfies h, and d 1, . . , djbe one that does not. The auxiliary appropriate
to the data points e = le"~ .' .. , en} can then be constructed as follows. Let
F be a function which takes e onto ,1, . ., Cj and all other n-tuples onto
d, ... , dj. Then consider the auxiliary T:

F(p) = q

where "p" is an n-tuple of"observational" quantities,and q = {q". . " <Jj}
the j-tuple of theoretical terms appearing in h. Clearly, e BS confirms h
with respect to T, since, on the assumption ofT, e constitutes a positive

instance of h,
Given the ease with which we can come by BS confirmations, the

question of comparative confirmation becomes quite crucial: why is it that
some BS confirmations count for more than others? Why is it that we take
BS confirmations with respect to some auxiliaries as seriously reflecting on
the acceptability of the hypothesis, whereas we ignore the great mass of
trivial BS confirmations, those relativized to ad-hoc auxiliaries? Glymour
attempts to offer something of an answer:

The distinctions that the strategy of testing makes with regard to what
is tested by what with respect to what else are of use despite the fact
that ifa hypothesis is not tested by a piece ofevidence with respect to a
theory, there is always some other theory with respect to which the
evidence confirms or disconfirms the hypothesis. It is important that
the bearing of evidence is sensitive to the changes of theory, but the
significance ofthat fact is not that the distinctions regarding evidential
relevance are unimportant. For in considering the relevance of
evidence to hypothesis, one is ordinarily concerned either with how
the evidence bears on a hypothesis with respect to some accepted
theory or theories, or else one is concerned with the bearing of the
evidence on a hypothesis with respect to definite theory containing
that hypothesis. 33

Glymour is surely correct in his intuitions about what we ordinarily do. But
this just rephrases the problem. Why should we do what we ordinarily do?

Why should we take some BS confirmations, those that use the "appropri
ate" auxiliaries more seriously than we take others? If it is permissible to
take seriously a BS confirmation relative to an untested auxiliary or relative
to the hypothesis itself being tested, as Glymour often insists, how can he
disregard any BS confirmations?

What is missing from Glymour's theory of confirmation seems obvious.
Glymour gives us no way of mediating the gap between anyone BS
confirmation ofh, and our increased confidence in h; he gives us no way to
gauge how much anyone BS confirmation supports, h, and the factors that
go into that determination. Although there may be a number of different
ways oHilling in this gap in Glymour's program, the earlier sections of this
paper suggest one attractive solution. Earlier I offered a Bayesian response
to the problem of old evidence, in which the problem is resolved by
shOWing how confirmation in the cases at hand can be understood as
proceeding by conditionalization on the discovery of some logical relation
between the hypothesis and the evidence in question. Now the logical
relation I talked about most explicitly was logical implication. But almost
everything I said holds good for whatever conception of the logical relation
we like: and this includes the logical relation that Glymour explicates,
[h I- eh. This framework is ready-made to fill in the gap in Glymour's
program. Within this framework, we can show how the discovery that a
given e BS confirms h with respect to T may increase our confidence in h,
given one group of priors, and how, given other priors, the discovery that e
BS confirms h with respect to T may have little or no effect on our
confidence in H. The Bayesian framework, as interpreted above, thus gives
us the tools needed to distinguish between the effects that different BS
confirmations may have on our confidence in h, and gives us a way of
resolving the problem ofthe ad-hoc auxiliary. To those of us ofthe Bayesian
persuasion, the conclusion is obvious: Glymour's theory of confirmation
can be fully adequate only if it is integrated into a Bayesian theory of
reasoning. 34
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22. Not everything of interest can be derived from (K*). The following interesting
properties are not derivable from (K*) and the axioms of the probability calculus alone:
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Consequently, there are an infinite number of probabIhtIes on L havmg the properties
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25. Although the recent literature on probability and conditIOnals, both mdlcatIve and
subjunctive, is vast, something should be said about the relation bet.\,:,~en my res~l~s here and
what others have done on conditionals. Two constraints on probabIlIties of condItionals have
been toyed with in the literature, Stalnaker's thesis and Harper's constraint:

(CI) P(h --,> e) ~ P(e/h)
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Unfortunately both constraints seem too strong, and lead to triviality ~esults. David Lewis h~
shown that if (Cl) is satisfied, then P can take on at most four different values. See hiS
Probabilities of Conditionals and Conditional Probabilities. Philosophical Review 85 (1976):
297-315. Similarly, Stalnaker has shown that if(C2) is satisfied, then P(h.....". e) = P(h ~ e). See
Letter by Robert Stalnaker to W. L. Harper, in Harper and .Hooker, FoundatIOns and
Philosophy, pp. 113-115. Neither of these arguments has gone WIthout challenge. See, e.g.,
Bas van Fraassen's answer to Lewis, Probabilities of Conditionals, in Harper and Hooker,
Foundations and Philosophy, pp. 261-308 and Harper's answer to Stalnake~ in Ramsey.Test
Conditionals and Iterated Belief Change, in Harper and Hooker, Foundations and Phtloso
phy, pp. 117-135. But (Cl) and (C2) are obviously strong conditio~s that introd~c~ s.ubstantial
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26. It would be unwise to adopt the slightly stronger constraint:
(") If PIA :J B) ~ I. then PtA " B) ~ I.
(**) is certainly unnatural if" I- " is interpreted as -implication, since S could be certain

of"A :> B" because he was certain that A is false, say. Adopting (**)would also block our ability
to use the formalism in the solution of the problem of old evidence, since (**) has the
consequence that ifP(e) = I, then P(h I- e) = I, no matter what h or e we are dealing with.

27. The same basic technique can be used to construct other probability functions of
interest. Ifthe conditions ofthe theorem are satisfied, and E = 0, then P(A), P(B), and P(A I- B)
will all have the required values and P(AJA I- B) = P(A). If E is chosen to be in the interval
[--1l',0), wheee 8' ~ min(cs, (I - c) 0 - ,)). then P(AlA " B) < PtA).

28. It certainly will not be the case that every configuration of priors is such that the
discovery that h I- e will increase S's degree of belief that h. It can easily be shown that
P(hlhl-e) > P(h) if and only if P(h I- e/h) > P(h I- e/-h). That is, the discovery that h I- e will
increase S's degree ofbelief in h ifand only ifS believes that it is more likely that h entails e ifh
is true than ifit is false. (This has an obvious parallel in the case ofe confirmingh: the discovery
that e confirms h ifand only ife is more likely given h than it is given -h.) It is obvious that this
condition will not always be satisfied. For example, when e is known to be false it is clear that
P(h I- e/h) ought to be O. Even when P(e) = I, one would not always expect P(h I- e/h) to be
greater than P(h I- e/-h) (let h be an arbitrary hypothesiS in biology and e be Kepler's laws). I
have found it impossible to specify in any illuminating way a set ofcircumstances in which it is
always reasonable to expect that P(h I- e/h) > P(h I- e/-h).

29. In the discussion period following this paper when it was presented at the Minnesota
Center for Philosophy of Science, Clark Glymour suggested that the historical facts of the
Einstein case do indeed agree with my analysis.

30. T & E, pp. 92-3.
31. T & E, p. 122.
32. I am appealing here to the formulation ofbootstrap confirmation that Glymour outlines

in T & E, pp. 116-117
33. T & E, pp. 120~121. Glymour elsewhere discusses how his method can distinguish

between the confirmation afforded to whole theories, Le., collections of hypotheses. See
T& E pp. 152-155, 182,352-353. But nothing Glymour says there touches on the problem that
concerns me here, so far as I can see.

34. For a very different attempt to combine the bootstrap idea with Bayesian probability,
see a paper that Glymour wrote after publishing T & E, "Bootstraps and Probabilities,"
Journal ofPhilosophy 77 (1980): 691-699. In that essay, Glymour uses the tools of subjective
probability directly in the explication of the relation, "e BS confirms h with respect to T,"
rather than considering the probability function defined over instances of that relation, itself
defined independently ofprobabilistic notions. I am inclined to agree with Paul Horwich in
thinking that "Glymour's proposal may reduce under pressure to a trivial modification of
probabilistic confirmation theories" ("The Dispensability ofBootstrap Conditions,"]ournal of
Philosophy 77 (1980): 699~702, esp. 700), and I am inclined to think that my way ofcombining
bootstraps with probability yields a much richer and more palatable mixture than does
Glymour's.




